Unique Properties of Eukaryote-Type Actin and Profilin Horizontally Transferred to Cyanobacteria
نویسندگان
چکیده
A eukaryote-type actin and its binding protein profilin encoded on a genomic island in the cyanobacterium Microcystis aeruginosa PCC 7806 co-localize to form a hollow, spherical enclosure occupying a considerable intracellular space as shown by in vivo fluorescence microscopy. Biochemical and biophysical characterization reveals key differences between these proteins and their eukaryotic homologs. Small-angle X-ray scattering shows that the actin assembles into elongated, filamentous polymers which can be visualized microscopically with fluorescent phalloidin. Whereas rabbit actin forms thin cylindrical filaments about 100 µm in length, cyanobacterial actin polymers resemble a ribbon, arrest polymerization at 5-10 µm and tend to form irregular multi-strand assemblies. While eukaryotic profilin is a specific actin monomer binding protein, cyanobacterial profilin shows the unprecedented property of decorating actin filaments. Electron micrographs show that cyanobacterial profilin stimulates actin filament bundling and stabilizes their lateral alignment into heteropolymeric sheets from which the observed hollow enclosure may be formed. We hypothesize that adaptation to the confined space of a bacterial cell devoid of binding proteins usually regulating actin polymerization in eukaryotes has driven the co-evolution of cyanobacterial actin and profilin, giving rise to an intracellular entity.
منابع مشابه
Effects of single amino acid substitutions in the actin-binding site on the biological activity of bovine profilin I.
For a detailed analysis of the profilin-actin interaction, we designed several point mutations in bovine profilin I by computer modeling. The recombinant proteins were analyzed in vitro for their actin-binding properties. Mutant proteins with a putatively higher affinity for actin were produced by attempting to introduce an additional bond to actin. However, these mutants displayed a lower affi...
متن کاملInteractions of Acanthamoeba profilin with actin and nucleotides bound to actin.
Three methods, fluorescence anisotropy of rhodamine-labeled profilin, intrinsic fluorescence and nucleotide exchange, give the same affinity, Kd = 0.1 microM, for Acanthamoeba profilins binding amoeba actin monomers with bound Mg-ATP. Replacement of serine 38 with cysteine created a unique site where labeling with rhodamine did not alter the affinity of profilin for actin. The affinity for rabb...
متن کاملModulation of actin structure and function by phosphorylation of Tyr-53 and profilin binding.
On starvation, Dictyostelium cells aggregate to form multicellular fruiting bodies containing spores that germinate when transferred to nutrient-rich medium. This developmental cycle correlates with the extent of actin phosphorylation at Tyr-53 (pY53-actin), which is low in vegetative cells but high in viable mature spores. Here we describe high-resolution crystal structures of pY53-actin and u...
متن کاملProfilin binding to poly-L-proline and actin monomers along with ability to catalyze actin nucleotide exchange is required for viability of fission yeast.
We tested the ability of 87 profilin point mutations to complement temperature-sensitive and null mutations of the single profilin gene of the fission yeast Schizosaccharomyces pombe. We compared the biochemical properties of 13 stable noncomplementing profilins with an equal number of complementing profilin mutants. A large quantitative database revealed the following: 1) in a profilin null ba...
متن کاملModel of formin-associated actin filament elongation.
Formin FH2 domains associate processively with actin-filament barbed ends and modify their rate of growth. We modeled how the elongation rate depends on the concentrations of profilin and actin for four different formins. We assume that (1) FH2 domains are in rapid equilibrium among conformations that block or allow actin addition and that (2) profilin-actin is transferred rapidly to the barbed...
متن کامل